The Roles of Integrin-Linked Kinase in the Regulation of Myogenic Differentiation
نویسندگان
چکیده
Myogenic differentiation is a highly orchestrated, multistep process that is coordinately regulated by growth factors and cell adhesion. We show here that integrin-linked kinase (ILK), an intracellular integrin- and PINCH-binding serine/threonine protein kinase, is an important regulator of myogenic differentiation. ILK is abundantly expressed in C2C12 myoblasts, both before and after induction of terminal myogenic differentiation. However, a noticeable amount of ILK in the Triton X-100-soluble cellular fractions is significantly reduced during terminal myogenic differentiation, suggesting that ILK is involved in cellular control of myogenic differentiation. To further investigate this, we have overexpressed the wild-type and mutant forms of ILK in C2C12 myoblasts. Overexpression of ILK in the myoblasts inhibited the expression of myogenic proteins (myogenin, MyoD, and myosin heavy chain) and the subsequent formation of multinucleated myotubes. Furthermore, mutations that eliminate either the PINCH-binding or the kinase activity of ILK abolished its ability to inhibit myogenic protein expression and allowed myotube formation. Although overexpression of the ILK mutants is permissive for the initiation of terminal myogenic differentiation, the myotubes derived from myoblasts overexpressing the ILK mutants frequently exhibited an abnormal morphology (giant myotubes containing clustered nuclei), suggesting that ILK functions not only in the initial decision making process, but also in later stages (fusion or maintaining myotube integrity) of myogenic differentiation. Additionally, we show that overexpression of ILK, but not that of the PINCH-binding defective or the kinase-deficient ILK mutants, prevents inactivation of MAP kinase, which is obligatory for the initiation of myogenic differentiation. Finally, inhibition of MAP kinase activation reversed the ILK-induced suppression of myogenic protein expression. Thus, ILK likely influences the initial decision making process of myogenic differentiation by regulation of MAP kinase activation.
منابع مشابه
Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملIntegrin-linked kinase--essential roles in physiology and cancer biology.
Integrin-linked kinase (ILK) is a multifunctional intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The use of recently developed Cre-lox-driven recombination and RNA-interference technologies has enabled the evaluation of the physiological roles of ILK in se...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملInsulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation.
Activation of the insulin-like growth factor (IGF) autocrine loop is required for myogenic differentiation and results in sustained activation of extracellular signal-regulated kinases-1 and -2 (ERK-1 and -2). We show here that insulin receptor substrate-1 (IRS-1) phosphorylation on tyrosine and serine residues and association with phosphatidylinositol 3-kinase (PI 3-kinase) are also associated...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 150 شماره
صفحات -
تاریخ انتشار 2000